THE TURBULENT NONISOTHERMAL FLOW OF AN
INCOMPRESSIBLE GAS IN A CIRCULAR
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The nonisothermal, fully developed turbulent flow of an incompressible gas in a circular
rotating cylindrical pipe is discussed. Equations are given for one-point second moments
of velocity and temperature pulsations, The results of calculating the thermal charac-
teristics are given,

In this paper we propose a method for calculating the dynamic and thermal characteristics of the com~
pletely developed turbulent flow of an incompressible gas in a circular cylindrical pipe which essentially
consists in using the equations for the change in the second moments of the pulsating variables to close the
averaged equations of momentum and heat transport.

A feature of this method in connection with the calculation of isothermal turbulent flows in pipes was
described, for example, in [1, 2]. An investigation of the effect of the rotation of the pipe on the transition
from turbulent to laminar flow was made in [3]. Here we calculate the critical Reynolds number as a func-
tion of the angular velocity of rotation of the fluid based on a method similar to that described in [1], A
method for calculating the characteristics of nonisothermal flows is developed in [4], where it was proposed
to use the equation for the change in the pulsation thermal flows p_c;ﬁ—{t' to calculate the fundamental thermal
characteristics,

On the basis of the method described in [4] we calculate below the thermal characteristics of a com-
pletely developed turbulent flow of an incompressible gas in a circular pipe and we study the effect of the
rotation of the fluid on the change in the averaged temperature profile and on the distribution of the pulsa-
tion thermal flows.

We consider the fully developed turbulent nonisothermal flow of an incompressible gas in a circular
cylindrical pipe, rotating about its axis of symmetry with angular velocity w, The origin of a cylindrical
coordinate system (z, r, ¢) is on the axis of symmetry, the z-axis coinciding with the direction of the funda-
mental motion,

Starting from the equation for the change in the Reynolds stresses in a diffusionless approximation
[3], we can write the characteristics of the pulsation motion as: :
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Fig.1. Distribution of uv at a section of the pipe: a) R,, = 0; b) 10% c) 0.5-10% d) 10% e) 2.5 10%,
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Fig.2. Distribution of the intensity of longitudinal pulsations: a) R , = 0; €) 2.5 10% g) 4.10%,
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Fig.3. Distribution of the intensity of transverse velocity pulsations and tangential stresses: 1)
uv; 2) v2 =w% a) R, = 0; €) 2,5-10% g) 4.10%,

Fig.4, Averaged velocity profile: a) R, = 0; g) 4-10°%,
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where the local and turbulent Reynolds numbers are defined by the numerical solution of a system of equa-
tions for the Reynolds numbers and the energy balance in the pulsation motion, which have the form

R% (CunRp + Cruu)
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From the solutions of (7) and (8) we can find the distribution of the Reynolds numbers Ry, and Ry, for
the case when the integral scale of turbulence is given in the form of a function of the transverse coordinate,
Here [ is the integral scale of turbulence,* and we assume that it can be approximated by a function of the
y coordinate only,

Having formulated the problem of determining the dynamiec characteristics from Egs. (1)-(8), we now
turn to consider the problem of determining the thermal characteristics, We can write the equation for con-
vective heat transfer for an incompressible fluid as
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From this equation and the Navier —Stokes equations we can obtaint the equations for the change in the

pulsation heat flows. To close this system of equations for the pulsation heat flows we use the approximation
proposed in [4] for the "dissipative® terms and the terms determining the change in uit' due to pressure

*The integral scale of turbulence can be defined as the solution of the corresponding differential equation [5,
6] in conjunction with the equations for the first and second moments.
tThe equations are given in [4] in a Cartesian coordinate system.
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Fig.5. Distribution of the transverse heat flows: a) R, = 0; d) 10% e) 2.5-10% f) 3.5.10°,
Fig.6. Distribution of the azimuthal heat flows: a) Ry, = 0; b) 10 ¢) 0,5-10% d) 10% e) 2,5-10%

f) 3.5.10%,
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Fig.7. Distribution of the longitudinal heat Fig, 8, Averaged temperature profile:
flows: a) R, = 0; d) 10% e) 2,510, a) Ry, = 0; ) 2,5.10% f) 3,5.10°%,
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Here Lyg is the integral scale defined by the spatial correlation between the pulsation velocity and the tem-
perature.

In this paper we use the equation for the change in the pulsation heat flows (and the equations for the
change in the Reynolds stresses) in the diffusionless approximation, Neglect of the turbulent diffusion is
justified by the extremely small dimensions of the superlayer (where the turbulent diffusion occurs) by com-
parison with the radius of the pipe, In addition, we shall also neglect the viscous diffusion of the pulsation
heat flows. Then, of course, we lose the possibility of calculating the pulsation thermal characteristics in
the molecular sublayer (but not in the transitional region), However, the profile of the averaged tempera-
ture in the sublayer can be calculated if we assume that molecular transport dominates in comparison with
molar transport.

The first integral of the averaged equation for convective heat transfer for a fully developed flow in a
pipe when the heat flows in the z direction are constant, i.e., for a linear temperature distribution along the
z-axis, ¢ = Az + T(r)), has the form

oAl jvzrdr, (10)
dr r 4
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where
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Recalling the approximation (9) and the condition §T/8z « 8T/9r, and also introducing the nondimensional
variables
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we can write the equations for the pulsation heat flows and Eq. (10) as
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where @7, = Ly, (88/0r) is the local temperature factor; Ry, = L&y /v) is the local Reynolds number of
the rotational motion,

Thus, if we know the dynamical characteristics, from Egs, (11)-(14) we can calculate the thermal char-
acteristics. However, we must know L, 4. Here we assume that L4 is proportional to the dynamic scale
Ly, i€,

Luﬁ = bLuu

The constants cqyg = cqus/b? and kg = kg/b in the approximation equations (9), strictly speaking, must
be defined experimentally, But their values can be estimated [7]. Indeed, if we consider the dynamical equa-
tions for the energy spectrum and the spectrum of the scalar substance when molecular transport dominates
(small Rg) and assume the flow under consideration to be weakly anisotropic, we find that ¢y, = 7.

In addition, if we congider the expression for the pulsation heat flows E{t' at large Ry and compare
the resulting expression with the corresponding Prandtl —Boussinesq} equation, we find that

Ve
2

We can also use a similar approach to determine estimates of the coefficients in the dynamic approxi-
mations [1, 2]. Then we obtain the following values for the coefficients in Egs, 2)-(8):

5

7, Cyy = 0.4a,

kﬂZku

Cruu _4—
k, = 0.96.

1The constant in the approximation (9b) can be determined by a different method, In particular, we can use
the assumption that turbulence is locally homogeneous and isotropic for Ry > 1 and the equation for pulsa-
tion motion [8],
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From the second moment balance equations (11)-(13), recalling the dynamic characteristics (Eqgs,
1), @), ¢@)), we can write an expression for the pulsation heat flows in the form:
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To determine ®L/l we use Eq, (14), Substituting v from (15) in it, we obtain
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Finally, recalling the definition of the local temperature factor, we can find the nondimensional aver-
aged temperature

_ 8
6= —-f 1 dy. (19)
Y
The system of equations (15)-(19) was solved numerically on a Minsk-22 computer. The estimates of
the coefficients cyyy, cuu, ku, Cius » kg given above were used in the computations, As an approximating
function for the integral scale of turbulence we used the Prandtl —Nikuradse polynomial, the change in scale
due to the rotation of the fluid being neglected.

Below we give the results of calculating the dynamic and thermal characteristics for R, = 10° and
various values of the Reynolds number for the rotational motion R, = ( 2/l2)RLw.

As distinct from the case of a nonrotating fluid, here the longitudinal and azimuthal velocity pulsations
are correlated, this correlation increasing as the rotational velocity increases (Fig.l), As we see from
Figs.2 and 3, as R, increases, we observe that the intensity of the radial and azimuthal velocity pulsations
decreases and at the same time there is a marked increase in the intensity of the longitudinal pulsations,
The effect of the rotation on the tangential stresses uv leads to their reduction; ‘this is so insignificant for
the range of variation of R, under consideration that, in the scale of Fig. 3 it is practically not detectable.
The reduction in the tangential turbulent stresses leads to a certain "laminarization" of the velocity profile
of the averaged motion, as shown in Fig,4.} But here we give the velocity profile curve corresponding to
"laminar® conditions,

The rotation of the fluid in the pipe essentially affects the distribution of the pulsation heat flows,
As we see from Fig, 5, as R, increases there is a marked reduction in the transverse pulsation heat flows,
Figure 6 shows the distribution of the azimuthal heat flows along the radius of the pipe. When there is no
rotation wd = 0, As R, increases a sharp increase is observed in the azimuthal heat flows and, beginning
with some value of R, there is a changeover in w¢, accompanied by a displacement of the maximum of
the function towards the wall.

The distribution of the longitudinal pulsation heat flows is shown in Fig. 7 for various values of R,.
We see that as R, decreases, ud falls, and because the rate of increase of the longitudinal veloecity pulsa-
tions exceeds the rate of diminution of the temperature pulsations, beginning with some value of R, near

tFigures 1-4 are essentially additional illustrations for [3].
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the axis of the pipe, there is a changeover in the distribution of the longitudinal heat flows, accompanied by
an increase in this region of the correlation,

The total effect of the rotation on the pulsation characteristics appears in the "laminarization" of the
averaged temperature profile, Figure 8 shows the profile of the nondimensional averaged temperature for
various values of R,,. But here we give the curve corresponding to "laminar™ conditions. We see that as
R, increases the temperature profile near the axis of the pipe is laminarized, the size of the "laminar"
region increasing as R, increases.

NOTATION
u=v,/vy _
v = v;,/ Vi are the nondimensional velocity pulsations;
W= V('p/ Vi
Vi = VTy/p is the dynamical velocity;
I =Lyy/a is the nondimensional integral scale of velocity pulsation;

Ry, = (Lfm/v) @V,/dr) is the local Reynolds number;
R = Lyy/v -E(/2) is the turbulent Reynolds number;

E=q/ 2)2 uf? is the kinetic energy of pulsation;

€ =E/vi is the nondimensional kinetic energy of pulsation;

R, =vya/v is the dynamical Reynolds number; '

Ry, =2w @*/v) is the Reynolds number of rotational motion;

Fk) is the spatial energy spectrum;

k is the wave number;

a is the radius of the pipe;

kus Cyus Crpu are the coefficients in Rotta's approximation [1];

y=r/a is the nondimensional coordinate;

A is the coefficient of thermal conductivity;

i is the projections of the dissipative function on the coordinate axes;

P; is the correlation component between "pressure pulsation" and "temperaturegradient
pulsation®;

T, = qW/pch,,< is the characteristic temperature;

o =v/A is the molecular Prandtl number;

®=(T —Ty/ T, is the nondimensional difference between the local temperature and the temperature
on the axis of the pipe;

a is the Heisenberg constant [9].
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