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The noniso thermal ,  fully developed turbulent  flow of an incompress ib le  gas in a c i r cu l a r  
ro ta t ing  cyl indr ica l  pipe is d i scussed .  Equations a r e  given for  one-point  second moments  
of veloci ty  and t e m p e r a t u r e  pulsa t ions .  The r e su l t s  of calculat ing the t he rma l  c h a r a c -  
t e r i s t i c s  a r e  given.  

In this pape r  we p ropose  a method for  calculat ing the dynamic and the rma l  c h a r a c t e r i s t i c s  of the c o m -  
ple te ly  developed turbulent  flow of an incompress ib le  gas in a c i r c u l a r  cyl indrical  pipe which essent ia l ly  
cons i s t s  in us ing the equations for  the change in the second moments  of the pulsat ing va r i ab le s  to c lose  the 
averaged  equations of momentum and heat  t r anspor t .  

A fea tu re  of this method in connection with the calculat ion of i so the rmal  turbulent flows in pipes was 
descr ibed ,  for  example ,  in [1, 2]. An invest igat ion of the effect  of the ro ta t ion  of the pipe on the t rans i t ion  
f r o m  turbulent  to l amina r  flow was made in [3]. Here  we calcula te  the c r i t i ca l  Reynolds number  as a func-  
tion of the angular  veloci ty  of ro ta t ion  of the fluid based  on a method s i m i l a r  to that descr ibed  in [1]. A 
method for  calculat ing the c h a r a c t e r i s t i c s  of non iso thermal  flows is developed in [41, where  it was proposed 
to use  the equation for  the change in the pulsat ion t he rma l  flows pCpUit' to calcula te  the fundamental  t he rma l  
c h a r a c t e r i s t i c s .  

On the bas i s  of the method descr ibed  in [4] we ca lcula te  below the the rmal  cha r ac t e r i s t i c s  of a c o m -  
ple te ly  developed turbulent flow of an incompress ib le  gas in a c i r cu l a r  pipe and we study the effect  of the 
rota t ion of the fluid on the change in the ave raged  t e m p e r a t u r e  prof i le  and on the dis tr ibut ion of the pu l sa -  
tion the rmal  f lows. 

We cons ider  the fully developed turbulent non iso thermal  flow of an incompress ib l e  gas in a c i r cu l a r  
cyl indr ica l  pipe,  ro ta t ing  about its axis of s y m m e t r y  with angular  veloci ty  w. The origin of a cyl indr ical  
coordinate  s y s t e m  (z, r ,  gv) is on the axis of s y m m e t r y ,  the z -ax i s  coinciding with the direct ion of the funda-  
mental  motion.  

Star t ing f r o m  the equation for  the change in the Reynolds s t r e s s e s  in a diffusionless approximat ion  
[3], we can wr i te  the c h a r a c t e r i s t i c s  of the pulsat ion motion as:  

vw = O, (1) 

- -  2 

u v = - -  RE(Cuu R~ + Cju~) 1 (2) 
RL R~P ' 

u--w = 12R~ u-v, (3) 

[ " ~ ] - -  kaRe + clu~- 1 - -  R~ (4) 
v 2 = w 2 = - -  uv RL (k=R~ "4- c luu)  2 ' 

~ = 2 ~ - -  (v~ + ~ ) ,  (5) 
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Fig. 2 
Distr ibution of u'-~" at  a sect ion of the pipe: a) R w = 0; b) 102; c) 0.5.103; d) 10'~; e) 2.5.103. 

Distr ibution of the intensi ty of longitudinal pulsat ions:  a) R w = 0; e) 2.5.103; g) 4.103. 
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Fig. 3. Distr ibution of the intensi ty of t r a n s v e r s e  veloci ty  pulsat ions and tangential s t r e s s e s :  1) 
u--v; 2) v 2 = ~2; a) R w = 0; e) 2.5.103; g) 4.103 . 

F ig .4 .  Averaged veloci ty  prof i le :  a) R w = 0; g) 4 .103.  

1/- 7- .. = R , I '  (6) 

where  the local and turbulent  Reynolds numbers  a re  defined by the numer ica l  solution of a s y s t e m  of equa-  
tions for  the Reynolds numbers  and the energy balance in the pulsat ion motion, which have  the f o r m  

R~ (c~Rs + c~u) 
R L + RL -- - -  P R,2y, (7) 

c ~  Z ~ 1~ 

3 \ c ~  - -  1 ) R e 

t~ L = - -  (k~l~,~ + ct~) (8) 

F rom the solutions of (7) and (8) we can find the distr ibution of the Reynolds numbers  R L and R E for  
the ca se  when the integral  sca le  of turbulence is given in the f o r m  of a function of the t r a n s v e r s e  coordinate .  
Here  l is the integral  sca le  of turbulence ,*  and we a s s u m e  that it can  be approximated  by a function of the 
y coordinate  only. 

Having formula ted  the p rob l em  of de te rmin ing  the dynamic c h a r a c t e r i s t i c s  f r o m  Eqs.  (1)-(8), we now 
turn to cons ider  the p rob l em  of de te rmin ing  the the rmal  c h a r a c t e r i s t i c s .  We can wr i t e  the equation for  con-  
vect ive  heat  t r ans f e r  for  an incompress ib le  fluid as 

Ot Ot + I v Ot ~ vz Ot 1 X { O ( Ot ) . c ) /  Ot 1 \ 0 / Ot )} 
0-:+'0-7 0 z -  ,. - D r  r �9 

F r o m  this equation and the N a v i e r - S t o k e s  equations we can obtaint  the equations for  the change in the 
pulsat ion heat  flows. To close this s y s t e m  of equations for  the pulsation heat  flows we use  the approximat ion  
proposed  in [4] for  the "d iss ipa t ive  ~ t e r m s  and the t e r m s  de te rmin ing  the change in u!t '  due to p r e s s u r e  1 
*The integral  scale  of turbulence can be defined as the solution of the cor responding  different ia l  equation [5, 
6] in conjunction with the equations for  the f i r s t  and second moments .  
~-The equations a r e  given in [4] in a Car tes ian  coordinate  sys t em.  
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Fig. 5 

Fig. 5. Distr ibution of the t r a n s v e r s e  heat  flows: a) R w = 0; d) 10a; e) 2 .5 .  103; f) 3 .5 .10  ~. 

F ig .6 .  Distr ibution of the azimuthal  heat flows: a) R w = 0; b) 102; c) 0,5-103; d) 103; e) 2.5.103; 
f) 3 .5 .  l0  s. 
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Fig. 7, Distr ibution of the longitudinal heat  

flows: a) R~ = 0; d) 103; e) 2 .5 .10  3. 
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Fig.  8. Averaged t empera tu re  profi le:  

a) R w = 0; e) 2.5.103; f) 3.5.103. 

pulsations: 

v~ t' 
a) q h = c ~ ) "  2 , 

Lu~ 
1 (9)  

E ~ , b) P~ = - -  k~ - vit'. 
Lu~ 

Here  Lu, ~ is the integral  scale  defined by the spatial  cor re la t ion  between the pulsation velocity and the t em-  
pe ra tu re .  

In this paper  we use  the equation for the change in the pulsation heat flows (and the equations for  the 
change in the Reynolds s t r e s se s )  in the diffusionless approximation.  Neglect of the turbulent diffusion is 
justified by the ex t remely  small  dimensions of the super layer  (where the turbulent diffusion occurs) by com-  
par i son  with the radius of the pipe. In addition, we shall also neglect  the viscous diffusion of the pulsation 
heat flows. Then, of course ,  we lose the possibil i ty of calculating the pulsation thermal  cha rac te r i s t i c s  in 
the molecular  sublayer  (but not in the transi t ional  region).  However,  the prof i le  of the averaged t e m p e r a -  
ture in the sublayer  can be calculated if we assume that molecular  t ranspor t  dominates in compar ison  with 
molar  t ranspor t .  

The f i r s t  integral  of the averaged equation for  convective heat t r ans fe r  for a fully developed flow in a 
pipe when the heat flows in the z di rect ion a re  constant,  i .e . ,  for  a l inear  t empera tu re  distr ibution along the 
z -axis ,  (t = Az + T( r ) ) ,has  the fo rm 

k dT __v~t--7-A 1 ~r (10) 
dr r O 

0 
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where  

A = 0 [ =  q~ a . q~ 0% ~ 

OZ pCp S V=rdr 
r~O 

Recal l ing the approximat ion  (9) and the condition ~ / 0 z  << ffT'/Oar, and a lso  introducing the nondimensional  
va r i ab l e s  

t' v'_ ' = - - T w .  ~ = ~ "  u =  �9 v =  or " 
T .  T ,  v ,  o ,  

, -r 
v ~  . u ' =  ~ . r 

r ~ =  , , y = - - ,  
O, O, a 

we can wr i t e  the equations for  the pulsat ion heat  flows and Eq. (10) as 

v--~ Rt. + u--v R,IO L - -  u ~ R,/2 I 1 + c1,~ Lu2~2 ~~ + ke R e L=t* ~ = 0, 

J"  vdv Loo 
0 

V ~ R , l O  L - -  UO R* I z 1 L.2. ~ L~= - -  -- - -  t + c1=~ --7T- + k~RE v~ - -  2Re. grt5 = 0 (12) 
Lua Lue 

uvdy 
0 

(11) 

v--~R*IOL--u-wR*P I 1 ~ t _ C l u O ~ . ~ _ k ~ i ~  E L ~  ~-~+RL.~.~=O, (13) 

S uvdy ~u~ L=~ 
0 

y 

0L ~ R ,  = - - R ,  1 0 (14) 
1 

t S :,ydv 
0 

where  | = Luu(~O/~r)  is the local t e m p e r a t u r e  factor ;  RLw = l_,~lU(W/v ) is the local  Reynolds number  of 
the rotat ional  motion.  

Thus,  if we know the dynamical  cha r ac t e r i s t i c s ,  f r o m  Eqs.  (11)-0.4) we can calcula te  the the rma l  c h a r -  
a c t e r i s t i c s .  However ,  we mus t  know Lu~ 5. Here  we a s s u m e  that Lu, 5 is propor t iona l  to the dynamic sca le  
Luu, i.e., 

Lu~ = b L ~ .  

The constants  Clu~9 = elu~/b 2 and lq5 = l%a/b in the approximat ion equations (9), s t r i c t ly  speaking, must  
be  defined exper imenta l ly .  But thei r  values  can be es t imated  [7]. Indeed, if we consider  the dynamical  equa-  
tions for  the energy spec t rum and the s p e c t r u m  of the s ca l a r  subs tance  when molecu la r  t r anspor t  dominates  
(small RE) and a s s um e  the flow under  considera t ion to be weakly anisotropic ,  we find that Cm0 = 7r. 

In addition, if we consider  the express ion  for  the pulsat ion heat flows u~t' at  l a rge  R E and comp are  
the resul t ing  express ion  with the cor responding  P r a n d t l - B o u s s i n e s q t  equation, we find that 

~/~ 
ke = k= 2 

We can also use  a s i m i l a r  approach  to de te rmine  es t imates  of the coeff icients  in the dynamic approx i -  
mat ions  [1, 2]. Then we obtain the following values for  the coefficients in Eqs.  (2)-(8): 

5 cx= u = -~- ~x, egg = O.4a, 

k u = 0:96. 

tThe  constant  in the approximat ion  (9b) can be de te rmined  by a different  method.  In pa r t i cu la r ,  we can use  
the assumpt ion  that turbulence is local ly homogeneous and isotropic  for  R E >> 1 and the equation for  pu l sa -  
tion motion [8]. 
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From the second moment balance equations (11)-(13), recal l ing the dynamic charac te r i s t i cs  (Eqs. 
(1), (2), (4)), we can wri te  an express ion for  the pulsation heat flows in the form: 

- -  1 OL R2E (Cv,,u R E -2t- cluv,,) (k,~ R E -+- Clu,b)  (kl t  ' R E +  c i r t u )  2 - -  4R~o 

r.r0, = R, l R~ (ku R~ + c~uu) (ke Re+ c~,,~) ~ + 2R 2 ' (15) 
Lo) 

- -  _ _  RLr 

(ke Rz q- q,,o) ' (16) 

- -  - -  RL [ (k. Re + c1,.,) (ke Re + cl.~P + 2R~,~ ] 
u~ = - -  v'ff (ke RE + clu,~) 1 + (k e Re _/cx,.e) • (k,, Re + c1.,,) * - -  4R~ " (17) 

To determine | we use Eq. (14). Substituting ~ f rom (15) in it, we obtain 

I R~ (c.,, RE + q.~) (k~ Re + c,,,O 
1 + R[ (k,, Re + cir.) 

Y _ 

(k. R~ + Ca..) ~ -  4R~ ] O~ i o (18) 
• (te~ I~  + c~.~) ~ § 2 t ~ , 0  l = ~ R ,  - -  j _ Y ~ v,u ydy 

0 

Finally, recal l ing  the definition of the local tempera ture  factor ,  we can find the nondimensional a v e r -  
aged tempera ture  

l 

-- S OL e = - -  - ~ - - d y .  (19) 

Y 

The sys tem of equations (15)-(19) was solved numerical ly  on a Minsk-22 computer .  The est imates of 
the coefficients Cmu , Cuu , ku, C~u,~, k~ given above were  used in the computations. As an approximating 
function for the integral scale of turbulence we used the P r a n d t l - N i k u r a d s e  polynomial, the change in scale 
due to the rotation of the fluid being neglected. 

Below we give the resul ts  of calculating the dynamic and thermal  charac te r i s t i cs  for R .  = 103 and 
various values of the Reynolds number for the rotational motion R w = (2//2)RLw. 

As distinct f rom the case of a nonrotating fluid, here  the longitudinal and azimuthal velocity pulsations 
are  corre la ted,  this cor re la t ion  increas ing as the rotational velocity increases  (Fig. 1). As we see f rom 
Figs. 2 and 3, as R w increases ,  we observe  that the intensity of the radial  and azimuthal velocity pulsations 
decreases  and at the same time there is a marked increase  in the intensity of the longitudinal pulsations. 
The effect of the rotat ion on the tangential s t r e s se s  uv leads to their reduction; :this is so insignificant for 
the range of variat ion of Re0 under considerat ion that, in the scale of Fig. 3 it is pract ica l ly  not detectable. 
The reduction in the tangential turbulent s t r e s se s  leads to a cer ta in  laminar izat ion of the velocity profile 
of the averaged motion, as shown in F ig .4 . t  But here  we give the velocity profile curve corresponding to 
" laminar"  conditions. 

The rotat ion of the fluid in the pipe essential ly affects the distribution of the pulsation heat flows. 
As we see f rom Fig. 5, as Rw increases  there is a marked reduction in the t r ansverse  pulsation heat flows. 
Figure 6 shows the distribution of the azimuthal heat flows along the radius of the pipe. When there is no 
rotat ion w,~ = 0. As R w increases  a sharp increase  i s  observed in the azimuthal heat flows and, beginning 
with some value of Rw, there is a changeover in w,), accompanied by a displacement of the maximum of 
the function towards the wall. 

The distribution of the longitudinal pulsation heat flows is shown in Fig. 7 for var ious values of R w . 
We see that as R w dec reases ,  u,) falls,  and because the rate  of increase  of the longitudinal velocity pulsa-  
tions exceeds the rate  of diminution of the tempera ture  pulsations, beginning with some value of Re0 , near 

"~ Figures 1-4 a re  essential ly additional i l lustrations for [3]. 
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the axis of the pipe, there  is a changeover  in the distribution of the longitudinal heat flows, accompanied by 
an increase  in this region of the corre la t ion .  

The total effect of the rotat ion on the pulsation charac te r i s t i c s  appears  in the " laminar iza t ion"  of the 
averaged tempera tu re  prof i le .  Figure 8 shows the prof i le  of the nondimensional averaged t empera tu re  for  
var ious values of R w. But he r e  we give the curve  corresponding to nlaminar"  conditions. We see that as 
R w increases  the t empera tu re  prof i le  near  the axis of the pipe is laminar ized,  the s ize  of the " laminar"  
region increasing as R w inc reases .  

u = % I v ,  
v = v ~ / v ,  
w = % / v ,  

v ,  = ,/'rwlP 
l : Luu la  
R L : (~u /V)  (dVz/dr) 

RE : L u u / v  . ~ (1/2) 

E = ( 1 / 2 ) ~  u12 

c = ~ / v 2 ,  

R ,  = v , a / u  
Rw = 2w (al/u) 
F(k) 
k 

ku, Cuu, Cmu 
y = r / a  
X 

Pi 

T .  = qw/pCpV. 
O" = P / ~  

= (T -- To)/T , 

/2 

N O T A T I O N  

a re  the nondimensional veloci ty pulsations; 

is the dynamical velocity;  
is the nondimensional integral  scale  of veloci ty pulsation; 
is the local Reynolds number;  

is the turbulent Reynolds number;  

is the kinetic energy of pulsation; 

is the nondimensional kinetic energy of pulsation; 
is the dynamical  Reynolds number;  
is the Reynolds number of rotat ional  motion; 
is the spatial  energy spectrum; 
is the wave number;  
is the radius of the pipe; 
a re  the coefficients in Rotta 's  approximation [1]; 
is the nondimensional coordinate;  
is the coefficient  of thermal  conductivity; 
is the project ions of the dissipative function on the coordinate axes; 
is the cor re la t ion  component between npressu re  pulsation n and W tempera tu re  gradient  
pulsation"; 
is the charac te r i s t i c  tempera ture ;  
is the molecular  Prandtl  number;  
is the nondimensional difference between the local t empera tu re  and the t empera tu re  
on the axis of the pipe; 
is the Heisenberg constant [9]. 
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